Hide Advanced Options
Courses - Fall 2019
CMSC
Computer Science Department Site
CMSC106
Introduction to C Programming
Credits: 4
Grad Meth: Reg
Prerequisite: MATH115.
Restriction: Must not be in Computer Science program; and must not have completed any courses from CMSC131-499 course range.
Credit only granted for: CMSC106, CMSC122, or INST126.
Design and analysis of programs in C. An introduction to computing using structured programming concepts. Intended for students with no or minimal programming experience.
CMSC122
Introduction to Computer Programming via the Web
Credits: 3
Grad Meth: Reg, P-F, Aud
CORE: IE
GenEd: DSSP
Restriction: Must not have completed any courses from CMSC131-499 course range; and must not be concurrently enrolled in CMSC131.
Credit only granted for: CMSC106, or CMSC122.
Introduction to computer programming in the context of developing full featured dynamic web sites. Uses a problem solving approach to teach basics of program design and implementation using JavaScript; relates these skills to creation of dynamic web sites; then explores both the potential and limits of web-based information sources for use in research. Intended to help relate a student's major to these emerging technologies.
CMSC131
Object-Oriented Programming I
Credits: 4
Grad Meth: Reg
Corequisite: MATH140.
Introduction to programming and computer science. Emphasizes understanding and implementation of applications using object-oriented techniques. Develops skills such as program design and testing as well as implementation of programs using a graphical IDE. Programming done in Java.
CMSC132
Object-Oriented Programming II
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC131; or must have earned a score of 5 on the A Java AP exam; or must have earned a satisfactory score on the departmental placement exam. And minimum grade of C- in MATH140.
Introduction to use of computers to solve problems using software engineering principles. Design, build, test, and debug medium -size software systems and learn to use relevant tools. Use object-oriented methods to create effective and efficient problem solutions. Use and implement application programming interfaces (APIs). Programming done in Java.
CMSC216
Introduction to Computer Systems
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC132; and minimum grade of C- in MATH141.
Corequisite: CMSC250.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program.
Introduction to the interaction between user programs and the operating system/hardware. Major topics include C programming, introductory systems programming, and assembly language. Other concepts covered include UNIX, machine data representation, thread management, optimization, and virtual memory. Programming is done in the Linux Environment.
CMSC250
Discrete Structures
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC131; and minimum grade of C- in MATH141.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program.
Formerly: CMSC150.
Fundamental mathematical concepts related to computer science, including finite and infinite sets, relations, functions, and propositional logic. Introduction to other techniques, modeling and solving problems in computer science. Introduction to permutations, combinations, graphs, and trees with selected applications.
CMSC298A
(Perm Req)
Special Topics in Computer Science
Credits: 1 - 4
Grad Meth: S-F
Contact department for information to register for this course.
CMSC320
(Perm Req)
Introduction to Data Science
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC216 and CMSC250.
Restriction: Permission of CMNS-Computer Science department.
An introduction to the data science pipeline, i.e., the end-to-end process of going from unstructured, messy data to knowledge and actionable insights. Provides a broad overview of several topics including statistical data analysis, basic data mining and machine learning algorithms, large-scale data management, cloud computing, and information visualization.
CMSC330
Organization of Programming Languages
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC250 and CMSC216.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in the Computer Science Minor program; or must be in Engineering: Computer program.
A study of programming languages, including their syntax, semantics, and implementation. Several different models of languages are discussed, including dynamic, scripting (e.g., Ruby, Python) functional (e.g., OCaml, Haskell, Scheme), and memory safe systems programming (e.g., Rust). Explores language features such as formal syntax, scoping and binding of variables, higher-order programming, typing, and type polymorphism. Introduces finite automata, context free grammar, parsing, lambda calculus, and basics of security attacks and software security.
CMSC351
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC250 and CMSC216.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program.
Credit only granted for: CMSC251 or CMSC351.
Additional information: CMSC351 may not count as one of the required upper level CMSC courses for students who are required to have 24 upper level CMSC credits for graduation, i.e. for students who became computer science majors prior to Fall, 2002.
A systematic study of the complexity of some elementary algorithms related to sorting, graphs and trees, and combinatorics. Algorithms are analyzed using mathematical techniques to solve recurrences and summations.
CMSC388D
(Perm Req)
Special Topics in Computer Science; 2D Game Engine Design
Credits: 2
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC388J
(Perm Req)
Special Topics in Computer Science; Building Secure Web Applications with Python and Flask
Credits: 1
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216.

Students are introduced to building secure, full-stack web applications with Python and Flask. Different types of security vulnerabilities and best practices to patch in students own applications will be examined.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC388L
(Perm Req)
Special Topics in Computer Science; Readings in HCI Research
Credits: 1
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216.

Students are introduced to research from the premier international conference of Human Computer Interaction, ACM CHI.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC388M
(Perm Req)
Special Topics in Computer Science; Introduction to Mobile XR
Credits: 1
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216

Students will explore the basics of smartphone-based augmented and virtual reality. Focus is placed on development of XR apps with Unity as well as the hardware, mathematics, physics, algorithms, best practices, and principles that make immersive experiences possible.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC389K
(Perm Req)
Special Topics in Computer Science; Full-stack Web Development with Node.js
Credits: 1
Grad Meth: Reg, P-F, Aud
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC389N
(Perm Req)
Special Topics in Computer Science; Introduction to PHP and Javascript
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC250 and CMSC216; and permission of CMNS-Computer Science department.
CMSC389O
(Perm Req)
Special Topics in Computer Science; The Coding Interview
Credits: 1
Grad Meth: Reg, P-F, Aud
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC389R
(Perm Req)
Special Topics in Computer Science; Introduction to Ethical Hacking
Credits: 1
Grad Meth: Reg, P-F, Aud
Prerequisites: Minimum grade of C- in CMSC250 and CMSC216.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC389W
(Perm Req)
Special Topics in Computer Science; Visualization through Mathematica
Credits: 1
Grad Meth: Reg
Jointly offered with MATH299M. Credit only granted for CMSC389W or MATH2 99M. Prerequisites: CMSC216 and CMSC250 with a grade of C- or better; an d permission of the Computer Science department.

A student-led course through Student-Initiated Courses (STICs) @ UMD: http://stics.umd.edu/ Please click here for more information.
CMSC396H
(Perm Req)
Computer Science Honors Seminar
Credits: 1
Grad Meth: Reg
Prerequisite: Must have admission into Computer Science Departmental Honors Program.
Restriction: Permission of CMNS-Computer Science department.
Credit only granted for: CMSC297 or CMSC396.
Formerly: CMSC297.
Overview of computer science research activities, techniques, and tools. Diverse research areas will be covered, including systems, networks, artificial intelligence, human-computer interaction, software engineering, graphics, vision, and theory.
CMSC411
(Perm Req)
Computer Systems Architecture
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Credit only granted for: ENEE446 or CMSC411.
Input/output processors and techniques. Intra-system communication, buses, caches. Addressing and memory hierarchies. Microprogramming, parallelism, and pipelining.
Students are required to take on-campus exams on the following dates: Thursdays, Oct. 10 and Nov. 21, 5 p.m.- 6:15 p.m. in HJP 0226.
CMSC412
(Perm Req)
Credits: 4
Grad Meth: Reg
CORE: CS
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and 1 course with a minimum grade of C- from (CMSC414, CMSC417, CMSC420, CMSC430, CMSC433, CMSC435, ENEE440, ENEE457).
Restriction: Permission of CMNS-Computer Science department; or must be in one of the following programs (Computer Science (Master's); Computer Science (Doctoral)).
Credit only granted for: CMSC412 or ENEE447.
A hands-on introduction to operating systems, including topics in: multiprogramming, communication and synchronization, memory management, IO subsystems, and resource scheduling polices. The laboratory component consists of constructing a small kernel, including functions for device IO, multi-tasking, and memory management.
CMSC414
(Perm Req)
Computer and Network Security
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Credit only granted for: CMSC414, ENEE459C, or ENEE457.
An introduction to the topic of security in the context of computer systems and networks. Identify, analyze, and solve network-related security problems in computer systems. Fundamentals of number theory, authentication, and encryption technologies, as well as the practical problems that have to be solved in order to make those technologies workable in a networked environment, particularly in the wide-area Internet environment.
CMSC417
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Computer networks and architectures. The OSI model including discussion and examples of various network layers. A general introduction to existing network protocols. Communication protocol specification, analysis, and testing.
CMSC420
(Perm Req)
Advanced Data Structures
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Description, properties, and storage allocation functions of data structures including balanced binary trees, B-Trees, hash tables, skiplists, tries, KD-Trees and Quadtrees. Algorithms for manipulating structures. Applications from areas such as String Processing, Computer Graphics, Information Retrieval, Computer Networks, Computer Vision, and Operating Systems.
CMSC421
(Perm Req)
Introduction to Artificial Intelligence
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Introduces a range of ideas and methods in AI, varying semester to semester but chosen largely from: automated heuristic search, planning, games, knowledge representation, logical and statistical inference, learning, natural language processing, vision, robotics, cognitive modeling, and intelligent agents. Programming projects will help students obtain a hands-on feel for various topics.
CMSC422
(Perm Req)
Introduction to Machine Learning
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC320, CMSC330, and CMSC351; and 1 course with a minimum grade of C- from (MATH240, MATH461); and permission of CMNS-Computer Science department.
Machine Learning studies representations and algorithms that allow machines to improve their performance on a task from experience. This is a broad overview of existing methods for machine learning and an introduction to adaptive systems in general. Emphasis is given to practical aspects of machine learning and data mining.
CMSC423
(Perm Req)
Bioinformatic Algorithms, Databases, and Tools
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
An introduction to the main algorithms, databases, and tools used in bioinformatics. Topics may include assembly and analysis of genome sequences, reconstructing evolutionary histories, predicting protein structure, and clustering of biological data. Use of scripting languages to perform analysis tasks on biological data. No prior knowledge of biology is assumed.
CMSC424
(Perm Req)
Credits: 3
Grad Meth: Reg
CORE: CS
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Students are introduced to database systems and motivates the database approach as a mechanism for modeling the real world. An in-depth coverage of the relational model, logical database design, query languages, and other database concepts including query optimization, concurrency control; transaction management, and log based crash recovery. Distributed and Web database architectures are also discussed.
CMSC425
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC420.
An introduction to the principles and practice of computer game programming and design. This includes an introduction to game hardware and systems, the principles of game design, object and terrain modeling, game physics, artificial intelligence for games, networking for games, rendering and animation, and aural rendering. Course topics are reinforced through the design and implementation of a working computer game.
CMSC426
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
An introduction to basic concepts and techniques in computervision. This includes low-level operations such as image filtering and edge detection, 3D reconstruction of scenes using stereo and structure from motion, and object detection, recognition and classification.
CMSC427
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: MATH240; and minimum grade of C- in CMSC420; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
An introduction to 3D computer graphics, focusing on the underlying building blocks and algorithms for applications such as 3D computer games, and augmented and virtual reality (AR/VR). Covers the basics of 3D image generation and 3D modeling, with an emphasis on interactive applications. Discusses the representation of 3D geometry, 3D transformations, projections, rasterization, basics of color spaces, texturing and lighting models, as well as programming of modern Graphics Processing Units (GPUs). Includes programming projects where students build their own 3D rendering engine step-by-step.
CMSC430
(Perm Req)
Introduction to Compilers
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Topics include lexical analysis, parsing, intermediate representations, program analysis, optimization, and code generation.
CMSC433
(Perm Req)
Programming Language Technologies and Paradigms
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Programming language technologies (e.g., object-oriented programming), their implementations and use in software design and implementation.
CMSC434
(Perm Req)
Introduction to Human-Computer Interaction
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Assess usability by quantitative and qualitative methods. Conduct task analyses, usability tests, expert reviews, and continuing assessments of working products by interviews, surveys, and logging. Apply design processes and guidelines to develop professional quality user interfaces. Build low-fidelity paper mockups, and a high-fidelity prototype using contemporary tools such as graphic editors and a graphical programming environment (eg: Visual Basic, Java).
CMSC435
(Perm Req)
Software Engineering
Credits: 3
Grad Meth: Reg
CORE: CS
Prerequisite: 1 course with a minimum grade of C- from (CMSC412, CMSC417, CMSC420, CMSC430, CMSC433); and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
State-of-the-art techniques in software design and development. Laboratory experience in applying the techniques covered. Structured design, structured programming, top-down design and development, segmentation and modularization techniques, iterative enhancement, design and code inspection techniques, correctness, and chief-programmer teams. The development of a large software project.
CMSC436
(Perm Req)
Programming Handheld Systems
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Fundamental principles and concepts that underlie the programming of handheld systems, such as mobile phones, personal digital assistants, and tablet computers. Particular emphasis will be placed on concepts such as limited display size, power, memory and CPU speed; and new input modalities, where handheld systems differ substantially from non-handheld systems, and thus require special programming tools and approaches. Students will apply these concepts and principles in the context of an existing handset programming platform.
CMSC451
(Perm Req)
Design and Analysis of Computer Algorithms
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Fundamental techniques for designing efficient computer algorithms, proving their correctness, and analyzing their complexity. General topics include graph algorithms, basic algorithm design paradigms (such as greedy algorithms, divide-and-conquer, and dynamic programming), network flows, NP-completeness, and other selected topics in algorithms.
CMSC456
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: (CMSC106, CMSC131, or ENEE150; or equivalent programming experience); and (2 courses from (CMSC330, CMSC351, ENEE324, or ENEE380); or any one of these courses and a 400-level MATH course, or two 400-level MATH courses). Or permission of instructor.
Also offered as: MATH456, ENEE456.
Credit only granted for: MATH456, CMSC456, or ENEE456.
The theory, application, and implementation of mathematical techniques used to secure modern communications. Topics include symmetric and public-key encryption, message integrity, hash functions, block-cipher design and analysis, number theory, and digital signatures.
CMSC460
(Perm Req)
Computational Methods
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and 1 course with a minimum grade of C- from (MATH241, MATH340); and 1 course with a minimum grade of C- from (CMSC106, CMSC131); and minimum grade of C- in MATH246.
Also offered as: AMSC460.
Credit only granted for: AMSC460, AMSC466, CMSC460, or CMSC466.
Basic computational methods for interpolation, least squares, approximation, numerical quadrature, numerical solution of polynomial and transcendental equations, systems of linear equations and initial value problems for ordinary differential equations. Emphasis on methods and their computational properties rather than their analytic aspects. Intended primarily for students in the physical and engineering sciences.
CMSC466
(Perm Req)
Introduction to Numerical Analysis I
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and 1 course with a minimum grade of C- from (MATH241, MATH340); and 1 course with a minimum grade of C- from (CMSC106, CMSC131); and minimum grade of C- in MATH410.
Also offered as: AMSC466.
Credit only granted for: AMSC460, CMSC460, AMSC466, or CMSC466.
Floating point computations, direct methods for linear systems, interpolation, solution of nonlinear equations.
CMSC470
(Perm Req)
Introduction to Natural Language Processing
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC320, CMSC330, and CMSC351; and 1 course with a minimum grade of C- from (MATH240, MATH461).
Restriction: Permission of CMNS-Computer Science department.
Introduction to fundamental techniques for automatically processing and generating natural language with computers. Machine learning techniques, models, and algorithms that enable computers to deal with the ambiguity and implicit structure of natural language. Application of these techniques in a series of assignments designed to address a core application such as question answering or machine translation.
Introduction to fundamental techniques for automatically processing and generating natural language with computers. Machine learning techniques, models, and algorithims that enable computers to deal with the ambiguity and implicit structure of natural language. Application of these techniques in a series of assignments designed to address a core application such as question answering or machine translation.
CMSC475
(Perm Req)
Combinatorics and Graph Theory
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and 1 course with a minimum grade of C- from (MATH241, MATH340). And permission of CMNS-Computer Science department; or permission of CMNS-Mathematics department.
Cross-listed with MATH475 .
General enumeration methods, difference equations, generating functions. Elements of graph theory, matrix representations of graphs, applications of graph theory to transport networks, matching theory and graphical algorithms.
Credit only granted for MATH475 or CMSC475.
CMSC498A
(Perm Req)
Selected Topics in Computer Science
Credits: 1 - 3
Grad Meth: Reg
Contact department for information to register for this course.
CMSC498M
(Perm Req)
Selected Topics in Computer Science; Machine Learning
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENEE324 or STAT400, Programming skills in Matlab, C+, or Python.

Students taking the course as CMSC498M must have completed CMSC330 and CMSC351 with a minimum grade of C-.

A broad introduction to machine learning and statistical pattern recognition. Topics include: Supervised learning (Bayesian learning and classifier, parametric/non-parametric learning, discriminant functions, support vector machines, neural networks, deep learning networks); Unsupervised learning (clustering, dimensionality reduction, autoencoders). The course will also discuss recent applications of machine learning, such as computer vision, data mining, autonomous navigation, and speech recognition.
CMSC498X
(Perm Req)
Selected Topics in Computer Science; Introduction to Wireless Communications and Software-Defined Radio
Credits: 3
Grad Meth: Reg
Prerequisite: One course with a minimum grade of C- from (CMSC411, CMSC412, CMSC412, CMSC414, CMSC417, CMSC433, CMSC435, CMSC456); and must not be a double major in Electrical Engineering.
CMSC499A
(Perm Req)
Independent Undergraduate Research
Credits: 1 - 3
Grad Meth: Reg
Contact department for information to register for this course.
CMSC624
Database System Architecture and Implementation
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC424; or students who have taken courses with comparable content may contact the department.
Credit only granted for: CMSC624 or CMSC828N.
Formerly: CMSC828N.
In-depth overview of database architectures--both the mainstream traditional architecture and more modern architectures that are especially prevalent in cloud implementations. Topics include different architectural choices for different application spaces and the tradeoffs inherent in choices and building different parts of database systems.
CMSC631
Program Analysis and Understanding
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC330; or students who have taken courses with comparable content may contact the department; or permission of instructor.
Techniques for static analysis of source code and modern programming paradigms. Analysis techniques: data flow analysis, program dependence graphs, program slicing, abstract interpretation. The meaning of programs: denotational semantics, partial evaluation. Advanced treatment of abstraction mechanisms: polymorphic types, operation overloading, inheritance, object-oriented programming and ML-like programming languages.
CMSC657
Introduction to Quantum Information Processing
Credits: 3
Grad Meth: Reg
Prerequisite: Familiarity with complex numbers and basic concepts in linear algebra (e.g., eigenvalues, eigenvectors, Hermitian and unitary matrices) is required.
Credit only granted for: CMSC657 or CMSC858K.
Formerly: CMSC858K.
Additional information: Previous background in quantum mechanics or theory of computation is not required.
An introduction to the field of quantum information processing. Students will be prepared to pursue further study in quantum computing, quantum information theory, and related areas.
CMSC660
Scientific Computing I
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: Must have knowledge of C or Fortran. And CMSC466, AMSC466, AMSC460, or CMSC460; or (must have knowledge of basic numerical analysis (linear equations, nonlinear equations, integration, interpolation); and permission of instructor).
Cross-listed with AMSC66 0.
Credit only granted for: AMSC660 or CMSC660.
Monte Carlo simulation, numerical linear algebra, nonlinear systems and continuation method, optimization, ordinary differential equations. Fundamental techniques in scientific computation with an introduction to the theory and software for each topic.
CMSC663
Advanced Scientific Computing I
Credits: 3
Grad Meth: Reg
Prerequisite: AMSC660 or CMSC660; and (AMSC661 or CMSC661).
Restriction: Permission of instructor.
Cross-listed with AMSC663.
Credit only granted for: AMSC663 or CMSC663.
In the sequence Advanced Scientific Computing I & Advanced Scientific Computing II, (AMSC663/CMSC663 and AMSC664/CMSC664, respectively) students work on a year-long individual project to develop software for a scientific task in a high performance computing environment. Lectures will be given on available computational environments, code development, implementation of parallel algorithms.
CMSC666
Numerical Analysis I
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC466 or AMSC466; and MATH410.
Cross-listed with AMSC66 6.
Credit only granted for: AMSC666 or CMSC666.
Interpolation and approximation, numerical integration, solution algorithms for nonlinear systems of equations, numerical optimization.
CMSC714
High Performance Computing Systems
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC411 and CMSC412; or permission of instructor.
Slected topics in high-performance systems, including contemporary architectures, interconnection topologies, shared memory and message-passing systems, multi-threaded kernels, latency avoidance and hiding techniques, methods for data and workload partitioning performance profiling, debugging.
CMSC723
Computational Linguistics I
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC421 or CMSC422; or students who have taken courses with comparable content may contact the department; or permission of instructor.
Cross-listed with: INST735, LING723.
Credit only granted for: CMSC723, LING723, or INST735.
Additional information: CMSC students may only receive PhD Comp. credit for CMSC723 or CMSC823, not both.
Fundamental methods in natural language processing. Topics include: finite-state methods, context-free and extended context-free models of syntax; parsing and semantics interpretation; n-gram and Hidden Markov models, part-of-speech tagging; natural language applications such as machine translation, automatic summarization, and question answering.
CMSC725
Geographical Information Systems and Spatial Databases
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC424 and CMSC420; or permission of instructor.
Topics in geographic information systems and spatial databases. Integrates related results from databases, cartography, geography, computer graphics, file access methods, computational geometry, image processing, data structures, and programming languages. Topics include: cartographic modeling, principles of cartography, methods from computational geometry, principles of spatial databases, access methods, and spatial data structures. The architecture of some existing spatial databases and geographic information systems will be examined in greater detail.
CMSC726
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC421 or CMSC422; or students who have taken courses with comparable content may contact the department; or permission of instructor.
An introduction to modern statistical data analysis using machine learning techniques. The course quickly surveys elementary statistical models (decision trees, nearest neighbors and linear regression) and moves on to more complex algorithms such as support vector machines, boosting, neural networks, structured prediction, apprenticeship learning, online learning, bandits, recommender systems and reinforcement learning. Throughout an emphasis is placed on mathematical rigor.
Prerequisite: CMSC421; or students who have taken courses with comparable content may contact the department; or permission of instructor.
CMSC763
Advanced Linear Numerical Analysis
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: AMSC666 or CMSC666; or permission of instructor.
Also offered as: AMSC763.
Credit only granted for: AMSC600, AMSC763, CMSC760, or CMSC763.
Formerly: AMSC600 and CMSC760.
Advanced topics in numerical linear algebra, such as dense eigenvalue problems, sparse elimination, iterative methods, and other topics.
CMSC798
(Perm Req)
Graduate Seminar in Computer Science
Credits: 1 - 3
Grad Meth: Reg
Contact department for information to register for this course.
CMSC798E
Graduate Seminar in Computer Science
Credits: 1
Grad Meth: Reg
CMSC799
(Perm Req)
Master's Thesis Research
Credits: 1 - 6
Grad Meth: Reg, S-F
Contact department for information to register for this course.
CMSC818B
Advanced Topics in Computer Systems; Decision-Making for Robotics
Credits: 3
Grad Meth: Reg, Aud
Restricted to Computer Science students (CMSC) or permissin of instructor.
CMSC818E
Advanced Topics in Computer Systems; Distributed and Cloud-Based Storage Systems
Credits: 3
Grad Meth: Reg, Aud
CMSC818O
Advanced Topics in Computer Systems; Computer and Network Security
Credits: 3
Grad Meth: Reg, Aud
CMSC818W
Advanced Topics in Computer Systems; Wireless and Mobile Systems for the IoT
Credits: 3
Grad Meth: Reg, Aud
CMSC828C
Advanced Topics in Information Processing; Statistical Pattern Recognition
Credits: 3
Grad Meth: Reg, Aud
CMSC828D
Advanced Topics in Information Processing; Interactive Data Analytics
Credits: 3
Grad Meth: Reg, Aud
CMSC828I
Advanced Topics in Information Processing; Advanced Techniques in Visual Learning and Recognition
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC422, CMSC426, or equivalent; or permission of instructor.
CMSC828O
Advanced Topics in Information Processing; Computational and Mathematical Analysis of Biological Networks across Scales
Credits: 3
Grad Meth: Reg, Aud
CMSC828Q
Advanced Topics in Information Processing; Nature-Inspired Computing
Credits: 3
Grad Meth: Reg, Aud
CMSC828X
(Perm Req)
Advanced Topics in Information Processing; Physically-based Modeling, Simulation, and Animation
Credits: 3
Grad Meth: Reg, Aud
This course covers computational methods for modeling of motions in the physical and virtual world. We will discuss various considerations and trade offs used in designing simulation methodologies (e.g. time, space, robustness, and generality). These include data structures, algorithms, computational methods and simulation techniques, their complexity and implementation. The lectures will also cover some applications of physically-based modeling and simulation, such as Computer Animation, VR, Medical Simulation, Special Effects, Computer Games, Robotics, and Bioinformatics.
CMSC828Y
Advanced Topics in Information Processing
Credits: 1 - 3
Grad Meth: Reg, Aud
CMSC828Z
Advanced Topics in Information Processing; Information Retrieval Systems
Credits: 3
Grad Meth: Reg, Aud
CMSC838X
Advanced Topics in Programming Languages; Personal Health Informatics & Visualization
Credits: 3
Grad Meth: Reg, Aud
Jointly offered with INST682. Credit only granted for INST682 or CMSC838 X.
CMSC858D
Advanced Topics in Theory of Computing; Algorithms, Data Structures and Inference fo High-Throughput Genomics
Credits: 3
Grad Meth: Reg, Aud
CMSC898
Pre-Candidacy Research
Credits: 1 - 8
Grad Meth: Reg, S-F
Contact department for information to register for this course.
CMSC899
(Perm Req)
Doctoral Dissertation Research
Credits: 6
Grad Meth: Reg
Contact department for information to register for this course.