Hide Advanced Options
Courses - Fall 2019
ENMA
Engineering, Materials Department Site
ENMA150
Materials of Civilization
Credits: 3
Grad Meth: Reg, P-F, Aud
CORE: PS
GenEd: DSNS, SCIS
The discovery of new materials has shaped history and built civilizations. The utilization, properties and production techniques of materials from the Bronze Age up through modern times and into the future will be traced. These materials are explained by considering their atomic structure, the binding forces between atoms and their arrangement, and how controlling the structure controls the materials properties.
ENMA180
Materials Science and Engineering: The Field and the Future
Credits: 1
Grad Meth: Reg
Restriction: Must be in a major in ENGR-A. James Clark School of Engineering.
Overview of the profession and the components of the Materials Science and Engineering program. Students will become familiar with the departmental faculty, areas of specialization within MSE, professional society student chapter, research opportunities and other resources available to students.
ENMA300
(Perm Req)
Introduction to Materials Engineering
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENES100; and permission of ENGR-Materials Science & Engineering department.
Corequisite: MATH241.
Recommended: PHYS261 and PHYS260.
Restriction: Permission of ENGR-Mechanical Engineering department.
Cross-listed with ENME382.
Credit only granted for: ENMA300 or ENME382.
Structure of materials, chemical composition, phase transformations, corrosion and mechanical properties of metals, ceramics, polymers and related materials. Materials selection in engineering applications.
ENMA312
Experimental Methods in Materials Science
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENMA300.
Corequisite: ENMA460.
Restriction: Junior standing or higher.
Introduction to experimental methods in materials characterization; synthesis of colloidal nanoparticles; X-ray diffraction and light scattering; optical microscopy; thermal conductivity and expansion; electrical measurements; heat capacity; computational materials design.
ENMA362
(Perm Req)
Mechanical Properties
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENMA300.
Restriction: Junior standing or higher; and permission of ENGR-Materials Science & Engineering department.
Overview of Mechanical Behavior, Elastic Behavior, Dislocations, Plastic Deformation, Strengthening of Crystalline Materials, Composite Materials, High Temperature Deformation of Crystalline Materials, Permanent Deformation of Noncrystalline Materials, Tensile Fracture at Low Temperatures, Engineering Aspects of Fracture, High Temperature Fracture, Fatigue, and Experimental determination of Mechanical Properties including Hardness of Metals and Strength of Metals, Polymers, Ceramics and Composites.
For ENMA majors only.
ENMA422
(Perm Req)
Radiation Effects of Materials
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENMA300; and permission of ENGR-Materials Science & Engineering department.
Credit only granted for: ENMA422 or ENMA489E.
Formerly: ENMA489E.
Ionizing radiation, radiation dosimetry and sensors, radiation processing, radiation effects on: polymers, metals, semiconductors, liquids, and gases. Radiation in advanced manufacturing, radiation-physical technology.
ENMA441
(Perm Req)
Characterization of Materials
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENMA300 and MATH206.
Restriction: Permission of ENGR-Materials Science & Engineering department; and senior standing.
Credit only granted for: ENMA489T or ENMA441.
Formerly: ENMA489T.
Techniques to characterize the properties of materials whose characteristic dimensions range from nanometers to macroscopic. These include conventional crystalline and noncrystalline materials, with a special attention to materials of current technological interest. The course will include recent results from the scientific literature.
ENMA443
Photonic Materials, Devices and Reliability
Credits: 3
Grad Meth: Reg, P-F, Aud
Restriction: Permission of ENGR-Materials Science & Engineering department; and junior standing or higher.
Credit only granted for: ENMA443 or ENMA489Z.
Formerly: ENMA489Z.
The course focuses on the understanding of the basic optical processes in semiconductors, dielectrics and organic materials. The application of such materials in systems composed of waveguides, light emitting diodes and lasers, as well as modulators is developed.
ENMA460
Physics of Solid Materials
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: PHYS271, PHYS270, and MATH241.
Restriction: Junior standing or higher; and must be in Engineering: Materials Science program.
Cross-listed with: PHYS431.
Credit only granted for: ENMA460 or PHYS431.
Classes of materials; introduction to basic ideal and real materials' behavior including mechanical, electrical, thermal, magnetic and optical responses of materials; importance of microstructure in behavior. One application of each property will be discussed in detail.
ENMA466
(Perm Req)
Advanced Materials Fabrication Laboratory
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENMA465; and permission of ENGR-Materials Science & Engineering department.
This course allows students an opportunity to study advanced materials systems in depth through a combination of lectures and hands-on laboratory experiments. Students will be trained in materials processing and characterization techniques. Each student will fabricate materials and devices in our state-of-the-art nanofabrication clean room facility (Fablab), as well as evaluate them using a variety of characterization techniques.
ENMA471
(Perm Req)
Kinetics, Diffusion and Phase Transformations
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: Must have completed or be concurrently enrolled in ENMA461.
Restriction: Junior standing or higher; or permission of ENGR-Materials Science & Engineering department.
Fundamentals of diffusion, the kinetics of reactions including nucleation and growth and phase transformations in materials.
ENMA473
Engineering Using High Strength Metals and Alloys
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: ENMA300, ENMA362, and ENMA461; and permission of ENGR-Materials Science & Engineering department.
This is a class focused on the materials engineering challenges of applying high strength metals and alloys to solutions. The extraordinary properties of these alloys derive from (1) highly metastable microstructures, (2) high strengths and melting points of the base metals, (3) complicated processing and fabrication procedures, and (4) their resulting complex behavior in extreme environments. This course will give you the knowledge base you need to select, apply and troubleshoot the performance of high strength metals and alloys in a variety of applications.
ENMA486
Seminar in Materials Science and Engineering
Credits: 1
Grad Meth: Reg, P-F, Aud
Restriction: Must be in Engineering: Materials Science program.
Current research in materials science and engineering and related fields. The lectures are presented by scientists and engineers from academia, national laboratory, US government, etc., in the format of seminars.
ENMA487
(Perm Req)
Capstone Preparation
Credits: 1
Grad Meth: Reg
Restriction: Must be in Engineering: Materials Science program; and senior standing; and permission of ENGR-Materials Science & Engineering department.
In preparation for the senior level design course, students will do background research and develop white papers from which teams will form around short listed design projects. The projects should focus on a society, industry, military or technological based problem in Materials Science and Engineering leading to a design and strategy to address the problem in the following course, ENMA 490. The course will include written and oral presentations of the white papers and team proposals.
ENMA489C
Selected Topics in Engineering Materials; Continuum Modeling of Materials
Credits: 3
Grad Meth: Reg, P-F, Aud
Prerequisite: ENMA300, MATH206, ENMA362, PHYS270/271, or equivalent. Recommended: Knowledge in Thermodynamics (ENMA461) and Physical Chemistry (CHEM481; or eqivalent. Restriction: Permission of ENGR-Materials Science & Engineering department. Credit granted for ENMA489C or ENME689C.
ENMA489D
Selected Topics in Engineering Materials; Archaeometry
Credits: 3
Grad Meth: Reg, P-F, Aud
ENMA495
(Perm Req)
Polymeric Engineering Materials I
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: ENMA300.
Restriction: Permission of ENGR-Materials Science & Engineering department.
Study of polymeric engineering materials and the relationship to structural type. Elasticity, viscoelasticity, anelasticity and plasticity of single and multiphase materials. Emphasis is on polymetric materials.
ENMA499
Senior Laboratory Project
Credits: 1 - 3
Grad Meth: Reg, P-F, Aud
ENMA641
(Perm Req)
Nanotechnology Characterization
Credits: 3
Grad Meth: Reg, Aud
Restriction: Permission of ENGR-Materials Science & Engineering department.
Credit only granted for: ENMA698T or ENMA641.
Formerly: ENMA698T.
Techniques to characterize the properties of materials whose characteristic dimensions are a few to a few hundred nanometers, including conventional nanocrystalline materials, but concentrating on novel nanomaterials: carbon nanotubes, quantum dots, quantum wires, and quantum wells are covered. The emphasis is on recent results from the scientific literature concerning those properties that make nanostructures interesting: quantum effects, novel transport phenomena, enhanced mechanical properties associated with localization and with small crystallite size.
ENMA643
Advanced Photonic Materials
Credits: 3
Grad Meth: Reg, Aud
Restriction: Permission of ENGR-Materials Science & Engineering department.
Credit only granted for: ENMA698Z, ENRE648Z, or ENMA643.
Formerly: ENMA698Z.
The understanding of the basic optical processes in photonic devices and systems compsed of waveguides, light emitting diodes and lasers, as well as modulators is developed. Lectures on basic degradation mechanisms of such systems will be presented. The area of organic based LED reliability will be covered from the point of view of the stability of the organic-inorganic interface.
ENMA650
(Perm Req)
Nanometer Structure of Materials
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: ENMA460; or students who have taken courses with comparable content may contact the department. And permission of ENGR-Materials Science & Engineering department.
The basic concepts required for understanding nanostructured materials and their behavior will be covered. Topics covered include the structural aspects of crystalline and amorphous solids and relationships to bonding types, point and space groups. Summary of diffraction theory and practice. The reciprocal lattice. Relationships of the microscopically measured properties to crystal symmetry. Structural aspects of defects in crystalline solids.
ENMA660
(Perm Req)
Thermodynamics in Materials Science
Credits: 3
Grad Meth: Reg, Aud
Corequisite: ENMA650.
Restriction: Permission of ENGR-Materials Science & Engineering department.
Thermodynamics of engineering solids. Thermal, diffusional and mechanical interactions in macroscopic systems. Systems in thermal contact, systems in thermal and diffusive contact, systems in thermal and mechanical contact.
ENMA680
(Perm Req)
Determination of Structure, Chemical Composition and Defects in Materials
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: ENMA650.
Restriction: Permission of ENGR-Materials Science & Engineering department.
Basic principles of electron microscopy theory, electron diffraction, and imaging theory. The electron beam sample interaction that gives rise to different signals is related to the structural and compositional information that is obtained from a sample using a TEM. The most common TEM techniques for structural characterization of a sample, namely, electron diffraction, bright/dark field imaging, and high resolution lattice imaging are discussed. Compositional information obtained from x-ray fluorescence and electron energy loss as well as the resolution of these techniques is also covered. A description of techniques used to study magnetic materials is also presented.
ENMA683
(Perm Req)
Structural Determination Laboratory
Credits: 1
Grad Meth: Reg, Aud
Restriction: Permission of ENGR-Materials Science & Engineering department.
Credit only granted for: ENMA698L or ENMA683.
Formerly: ENMA698L.
The operation of an electron microscope is covered. TEM techniques that are used to characterize the structure, defects and composition of a sample are presented and used to study a variety of materials. These techniques are: electron diffraction patterns, bright/dark field imaging, high resolution lattic imaging and energy dispersive x-ray spectroscopy. Also covers different sample preparation techniques for TEM. The goal is that the students become independent users of the TEM.
ENMA688
Seminar in Materials Science and Engineering
Credits: 1
Grad Meth: Reg, Aud
ENMA689C
Special Topics in Engineering Materials; Continuum Modeling of Materials
Credits: 3
Grad Meth: Reg, Aud
Restriction: Permission of ENGR-Materials Science & Engineering department. Credit granted for ENMA489C or ENME689C.
ENMA698
(Perm Req)
Special Problems in Materials Science and Engineering
Credits: 1 - 3
Grad Meth: Reg, Aud
Contact department for information to register for this course.
ENMA797
Credits: 3
Grad Meth: Reg, Aud
This course is designed to provide students with a directed independent study course in order to prepare the scholarly paper required for the master's degree without thesis degree option.
ENMA799
Master's Thesis Research
Credits: 1 - 6
Grad Meth: Reg
Contact department for information to register for this course.
ENMA898
Pre-Candidacy Research
Credits: 1 - 8
Grad Meth: Reg
Contact department for information to register for this course.
ENMA899
(Perm Req)
Doctoral Dissertation Research
Credits: 6
Grad Meth: Reg
Contact department for information to register for this course.