Hide Advanced Options
Courses - Spring 2026
MSML
Machine Learning
MSML604
Introduction to Optimization
Credits: 3
Grad Meth: Reg
Prerequisite: Undergraduate courses in calculus and basic linear algebra.
Recommended: DATA601.
Focuses on recognizing, solving, and analyzing optimization problems. Linear algebra overview: vector spaces and matrices, linear transformations, matrix algebra, projections, similarity transformations, norms, eigen-decomposition and SVD. Convex sets, convex functions, duality theory and optimality conditions. Unconstrained optimization: 1D search, steepest descent, Newton's method, conjugate gradient method, DFP and BFGS methods, stochastic gradient descent. Constrained optimization: projected gradient methods, linear programming, quadratic programming, penalty functions, and interior-point methods. Global search methods: simulated annealing, genetic algorithms, particle swarm optimization.
MSML605
Computing Systems for Machine Learning
Credits: 3
Grad Meth: Reg
Restriction: Must be in the MPS in Machine Learning program.
Cross-listed with: MSAI605.
Credit only granted for: MSML605 or MSAI605.
Programming, software and hardware design and implementation issues of computing systems for machine learning. Topics in the programming/software domain will include: basic Python program structure, variables and assignment, built-in data types, flow control, functions and modules; basic I/O, and file operations. Classes, object-oriented programming and exceptions. Regular expressions, database access, network programming and sockets. Introduction to the Numpy, Scipy and Matplotlib libraries. Topics in the hardware domain include computer architecture, CPUs, single- and multi-core architectures, GPUs, memory and I/O systems, persistent storage, and virtual memory. Parallel processing architectures, multiprocessing and cluster processing.
MSML606
Algorithms and Data Structures for Machine Learning
Credits: 3
Grad Meth: Reg, Aud
Provides both a broad coverage of basic algorithms and data structures. Topics include sorting, searching, graph and string algorithms; greedy algorithm, branch-and-bound, dynamic programming and job scheduling; Arrays, linked lists, queues, stacks, and hash tables; Algorithm complexity, best/average/worst case analysis. Applications selected from machine learning problems.
MSML612
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: DATA603 or MSML603.
Cross-listed with: DATA612, MSAI612.
Credit only granted for: DATA612, MSAI612 or MSML612.
Provides an introduction to the construction and use of deep neural networks: models that are composed of several layers of nonlinear processing. The class will focus on the main features in deep neural nets structures. Specific topics include backpropagation and its importance to reduce the computational cost of the training of the neural nets, various coding tools available and how they use parallelization, and convolutional neural networks. Additional topics may include autoencoders, variational autoencoders, convolutional neural networks, recurrent and recursive neural networks, generative adversarial networks, and attention-based models. The concepts introduced will be illustrated by examples of applications chosen among various classification/clustering questions, computer vision, natural language processing.
MSML640
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: BIOI603, DATA603, or MSML603.
Cross-listed with: DATA640, MSAI640.
Credit only granted for: MSML640, MSAI640 or DATA640.
An introduction to basic concepts and techniques in computer vision. Topics include low-level operations such as image filtering, correlation, edge detection and Fourier analysis. Image segmentation, texture and color analysis. Perspective, cameras and 3D reconstruction of scenes using stereo and structure from motion. Deep learning for object detection, recognition and classification in images and video.