Prerequisite: ENEE460 and MATH463; or students who have taken courses with comparable content may contact the department.
General systems models. State variables and state space. Linearity and its implications. Controllability and observability. State space structure and representation. Realization theory and algorithmic solutions. Parameterizations of linear systems; canonical forms. Basic results from stability theory. Stabilizability. Fine structure of linear multivariable systems; minimal indices and polynomial matrices. Interplay between frequency domain and state space.