Designed to introduce students to the principles, methods, and software used for simulation and modeling of macromolecules of biological interest such as proteins, lipids, and polysaccharides. Along with experiment and theory, computational modeling provides new tools for analysis, explanation and prediction. The course is also useful for students who plan to use experimental techniques as their primary approach, but who will employ computational modeling as a tool to obtain integrative understanding of complex systems. Finally, the course should be valuable as an introductory overview for students planning to conduct their thesis research in computational modeling of biological systems. Class topics: Basic statistical thermodynamics, Force fields, Molecular dynamics/ monte carlo methods, Conformational analysis, Fluctuations & transport properties, Free-energy calculations, Multiscale modeling.