Hide Advanced Options
Courses - Spring 2025
CMSC
Computer Science Department Site
Open Seats as of
10/30/2024 at 10:30 PM
CMSC100
Bits and Bytes of Computer and Information Sciences
Credits: 1
Grad Meth: Reg
Restriction: For first time freshmen and first time transfer students; or permission of CMNS-Computer Science department.
Cross-listed with: INST101.
Credit only granted for: CMSC100 or INST101.
Students are introduced to the fields (and disciplines) of computer science and information science within a small classroom setting. They will learn to make a successful transition from high school to the university, while exploring study skills, student success plans and research opportunities.
CMSC115
Gender, Race and Computing
Credits: 3
Grad Meth: Reg
GenEd: DSSP, DVUP
Restriction: Must not have taken CMSC216 or higher.
Cross-listed with: WGSS115.
Credit only granted for: WGSS115 or CMSC115.
Race and gender have shaped computing from its earliest histories to contemporary debates over bias in search algorithms, surveillance, and AI. As computational processes shape ever more dimensions of everyday life from the personal to the global scale, understanding how they operate and how power operates within them grows ever more important. Combating racism and sexism is not as simple as ensuring the pool of programmers and engineers is more diverse; structures of power are embedded in digital technologies as they are in all aspects of our society, and we must learn to perceive their operation if we hope to transform them. We will examine how racism and sexism operate in the field of computer science and in everyday uses of digital technologies, while studying how feminist and racial justice movements have created alternative approaches. This class is for anyone who wishes to better understand the relationships between digital technology, structural power, and social justice.
CMSC116
You and I, and Generative AI
Credits: 3
Grad Meth: Reg
GenEd: DSSP, SCIS
Restriction: Must not have completed CMSC216 or higher.
This course explores whether and how generative AI can be developed to support human values and promote human autonomy, and how the context of the deployment of AI may impact answers to this question. Entire industries are being transformed by AI technology, much of which is driven by the recent meteoric advances in generative AI. These advances have enabled many people to do things they previously were incapable of but have also brought about a series of ethical questions around their development and use. These developments raise fundamental questions around whether it is even possible to develop generative AI technology that empowers rather than replaces people, and which serves human values such as rights, justice, and dignity. It also raises the question: Is generative AI different from other technologies that can be used toward both positive and negative ends?
CMSC122
Introduction to Computer Programming via the Web
Credits: 3
Grad Meth: Reg
GenEd: DSSP
Restriction: Must not have completed any courses from CMSC131-499 course range; and must not be concurrently enrolled in CMSC131.
Credit only granted for: CMSC106, or CMSC122.
Introduction to computer programming in the context of developing full featured dynamic web sites. Uses a problem solving approach to teach basics of program design and implementation using JavaScript; relates these skills to creation of dynamic web sites; then explores both the potential and limits of web-based information sources for use in research. Intended to help relate a student's major to these emerging technologies.
CMSC125
Introduction to Computing
Credits: 3
Grad Meth: Reg
GenEd: DSSP
Prerequisite: Must have completed or be concurrently enrolled in MATH115 or higher.
Restriction: Must not be in the Computer Science program; and must not have completed any courses from CMSC131-499; and must not have completed BMGT302, IMDM127 or INST126.
Credit only granted for: IMDM127 or CMSC125.
Introduces you to the computing field as a whole. You will gain skills used across the spectrum of computing majors and learn about the great variety of routes into the various areas of study and employment in technological fields.
CMSC131
Object-Oriented Programming I
Credits: 4
Grad Meth: Reg
Corequisite: MATH140.
Credit only granted for: CMSC131, CMSC133 or CMSC141.
Introduction to programming and computer science. Emphasizes understanding and implementation of applications using object-oriented techniques. Develops skills such as program design and testing as well as implementation of programs using a graphical IDE. Programming done in Java.
CMSC132
Object-Oriented Programming II
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC131; or must have earned a score of 5 on the A Java AP exam; or must have earned a satisfactory score on the departmental placement exam; and minimum grade of C- in MATH140.
Credit only granted for: CMSC132 or CMSC142.
Introduction to use of computers to solve problems using software engineering principles. Design, build, test, and debug medium -size software systems and learn to use relevant tools. Use object-oriented methods to create effective and efficient problem solutions. Use and implement application programming interfaces (APIs). Programming done in Java.
CMSC216
(Perm Req)
Introduction to Computer Systems
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC132; and minimum grade of C- in MATH141.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program; and Permission of CMSC - Computer Science department.
Introduction to the interaction between user programs and the operating system/hardware. Major topics include C programming, introductory systems programming, and assembly language. Other concepts covered include UNIX, machine data representation, thread management, optimization, and virtual memory. Programming is done in the Linux Environment.
CMSC250
(Perm Req)
Discrete Structures
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC131; and minimum grade of C- in MATH141.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program; and Permissions of CMSC - Computer Science department.
Fundamental mathematical concepts related to computer science, including finite and infinite sets, relations, functions, and propositional logic. Introduction to other techniques, modeling and solving problems in computer science. Introduction to permutations, combinations, graphs, and trees with selected applications.
CMSC250H
(Perm Req)
Discrete Structures
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC131; and minimum grade of C- in MATH141.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program; and Permissions of CMSC - Computer Science department.
Fundamental mathematical concepts related to computer science, including finite and infinite sets, relations, functions, and propositional logic. Introduction to other techniques, modeling and solving problems in computer science. Introduction to permutations, combinations, graphs, and trees with selected applications.
Prerequisite: Minimum grade of C- in CMSC131; and minimum grade of C- in MATH141; and permission of CMNS-Computer Science department.
CMSC298A
(Perm Req)
Special Topics in Computer Science
Credits: 1 - 4
Grad Meth: S-F
Contact department for information to register for this course.
CMSC298Q
Special Topics in Computer Science; Quantum Steampunk Science-Fiction Workshop
Credits: 3
Grad Meth: Reg, P-F, Aud
Cross-listed with ARHU298Q, and PHYS299Q. Credit only granted for ARHU298Q, CMSC298Q, or PHYS299Q.

Steampunk is a science-fiction genre in which futuristic technologies populate Victorian-era settings. Recently, steampunk has come to life in the scientific field of quantum thermodynamics. Thermodynamics, the study of energy, grew out of the Industrial Revolution. Two centuries later, quantum physics is transforming computing and cryptography. Quantum science is now revolutionizing 19th-century thermodynamics in quantum thermodynamics, which features quantum engines, automata, and more. Quantum thermodynamics inspired the growing subgenre of quantum steampunk. In this course, you will read science fiction, write quantum-steampunk short stories, receive feedback, and critique classmates writing. In parallel, you will learn about quantum physics, technologies, and thermodynamics.
CMSC320
(Perm Req)
Introduction to Data Science
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC216 and CMSC250.
Restriction: Permission of CMNS-Computer Science department.
Credit only granted for: CMSC320, DATA320 or STAT426.
An introduction to the data science pipeline, i.e., the end-to-end process of going from unstructured, messy data to knowledge and actionable insights. Provides a broad overview of several topics including statistical data analysis, basic data mining and machine learning algorithms, large-scale data management, cloud computing, and information visualization.
CMSC330
(Perm Req)
Organization of Programming Languages
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC250 and CMSC216.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in the Computer Science Minor program; or must be in Engineering: Computer program; and Permission of CMSC - Computer Science department.
A study of programming languages, including their syntax, semantics, and implementation. Several different models of languages are discussed, including dynamic, scripting (e.g., Ruby, Python) functional (e.g., OCaml, Haskell, Scheme), and memory safe systems programming (e.g., Rust). Explores language features such as formal syntax, scoping and binding of variables, higher-order programming, typing, and type polymorphism. Introduces finite automata, context free grammar, parsing, lambda calculus, and basics of security attacks and software security.
CMSC335
(Perm Req)
Web Application Development with JavaScript
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC216 and CMSC250.
Restriction: Permission of CMNS-Computer Science Department.
Credit only granted for: CMSC389N or CMSC335.
Formerly: CMSC389N.
Provides an introduction to modern ways of developing Web Applications/Services using JavaScript for both front-end and back-end. The course covers topics on fundamental JavaScript language constructs, server-side JavaScript, back-end data persistence, and client-side JavaScript to build Web Applications that interact with Web services and back-end databases.
CMSC351
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC250 and CMSC216.
Restriction: Must be in a major within the CMNS-Computer Science department; or must be in Engineering: Computer program; or must be in the Computer Science Minor program; and Permission from the CMSC - Computer Science department.
A systematic study of the complexity of some elementary algorithms related to sorting, graphs and trees, and combinatorics. Algorithms are analyzed using mathematical techniques to solve recurrences and summations.
CMSC396H
(Perm Req)
Computer Science Honors Seminar
Credits: 1
Grad Meth: Reg
Prerequisite: Must have admission into Computer Science Departmental Honors Program.
Restriction: Permission of CMNS-Computer Science department.
Overview of computer science research activities, techniques, and tools. Diverse research areas will be covered, including systems, networks, artificial intelligence, human-computer interaction, software engineering, graphics, vision, and theory.
CMSC401
Algorithms for Geospatial Computing
Credits: 3
Grad Meth: Reg
Prerequisite: GEOG276; or a minimum grade of C- in CMSC330 and CMSC351; or permission of instructor.
Cross-listed with: GEOG470.
Jointly offered with: GEOG770.
Credit only granted for: CMSC498Q, CMSC401, CMSC788I, GEOG470, GEOG498I, GEOG770, or GEOG788I.
Formerly: GEOG498I.
An introduction to fundamental geospatial objects and geometric algorithms for spatio-temporal data processing and analysis. Point data representation and analysis: spatial data models and data structures, algorithms for spatial queries, point clustering algorithms. Surface and scalar field modeling, such as terrains: raster and triangle-based models (TINs), algorithms for building and querying TINs. Algorithms for natural and urban terrain analysis: morphology computation and visibility analysis. Applications to processing and analysis of LiDAR (Light Detection And Ranging) data in the context of terrain reconstruction, urban modeling, forest management and bathymetry reconstruction for coastal data management. Road network computation and analysis: algorithms for route computation in road networks, and for road network reconstruction from GPS and satellite data.
CMSC411
(Perm Req)
Computer Systems Architecture
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Credit only granted for: ENEE446 or CMSC411.
Input/output processors and techniques. Intra-system communication, buses, caches. Addressing and memory hierarchies. Microprogramming, parallelism, and pipelining.
CMSC412
(Perm Req)
Credits: 4
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and 1 course with a minimum grade of C- from (CMSC414, CMSC417, CMSC420, CMSC430, CMSC433, CMSC435, ENEE440, ENEE457).
Restriction: Permission of CMNS-Computer Science department; or must be in one of the following programs (Computer Science (Master's); Computer Science (Doctoral)).
Credit only granted for: CMSC412 or ENEE447.
A hands-on introduction to operating systems, including topics in: multiprogramming, communication and synchronization, memory management, IO subsystems, and resource scheduling polices. The laboratory component consists of constructing a small kernel, including functions for device IO, multi-tasking, and memory management.
CMSC414
(Perm Req)
Computer and Network Security
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Credit only granted for: CMSC414, ENEE459C, or ENEE457.
An introduction to the topic of security in the context of computer systems and networks. Identify, analyze, and solve network-related security problems in computer systems. Fundamentals of number theory, authentication, and encryption technologies, as well as the practical problems that have to be solved in order to make those technologies workable in a networked environment, particularly in the wide-area Internet environment.
CMSC417
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Computer networks and architectures. The OSI model including discussion and examples of various network layers. A general introduction to existing network protocols. Communication protocol specification, analysis, and testing.
CMSC420
(Perm Req)
Advanced Data Structures
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Description, properties, and storage allocation functions of data structures including balanced binary trees, B-Trees, hash tables, skiplists, tries, KD-Trees and Quadtrees. Algorithms for manipulating structures. Applications from areas such as String Processing, Computer Graphics, Information Retrieval, Computer Networks, Computer Vision, and Operating Systems.
CMSC421
(Perm Req)
Introduction to Artificial Intelligence
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Introduces a range of ideas and methods in AI, varying semester to semester but chosen largely from: automated heuristic search, planning, games, knowledge representation, logical and statistical inference, learning, natural language processing, vision, robotics, cognitive modeling, and intelligent agents. Programming projects will help students obtain a hands-on feel for various topics.
CMSC422
(Perm Req)
Introduction to Machine Learning
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC320, CMSC330, and CMSC351; and 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and permission of CMNS-Computer Science department.
Machine Learning studies representations and algorithms that allow machines to improve their performance on a task from experience. This is a broad overview of existing methods for machine learning and an introduction to adaptive systems in general. Emphasis is given to practical aspects of machine learning and data mining.
Credit only granted for CMSC422 or CMSC498M.
CMSC423
(Perm Req)
Bioinformatic Algorithms, Databases, and Tools
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
An introduction to the main algorithms, databases, and tools used in bioinformatics. Topics may include assembly and analysis of genome sequences, reconstructing evolutionary histories, predicting protein structure, and clustering of biological data. Use of scripting languages to perform analysis tasks on biological data. No prior knowledge of biology is assumed.
CMSC424
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351 and CMSC330; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Students are introduced to database systems and motivates the database approach as a mechanism for modeling the real world. An in-depth coverage of the relational model, logical database design, query languages, and other database concepts including query optimization, concurrency control; transaction management, and log based crash recovery. Distributed and Web database architectures are also discussed.
CMSC425
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351.
Restriction: Permission of CMNS-Computer Science department.
An introduction to the principles and practice of computer game programming and design. This includes an introduction to game hardware and systems, the principles of game design, object and terrain modeling, game physics, artificial intelligence for games, networking for games, rendering and animation, and aural rendering. Course topics are reinforced through the design and implementation of a working computer game.
CMSC426
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351 and 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program; or permission of the instructor.
Restriction: Permission of CMNS-Computer Science department.
An introduction to basic concepts and techniques in computervision. This includes low-level operations such as image filtering and edge detection, 3D reconstruction of scenes using stereo and structure from motion, and object detection, recognition and classification.
CMSC427
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461).
Restriction: Permission of CMNS-Computer Science department.
An introduction to 3D computer graphics, focusing on the underlying building blocks and algorithms for applications such as 3D computer games, and augmented and virtual reality (AR/VR). Covers the basics of 3D image generation and 3D modeling, with an emphasis on interactive applications. Discusses the representation of 3D geometry, 3D transformations, projections, rasterization, basics of color spaces, texturing and lighting models, as well as programming of modern Graphics Processing Units (GPUs). Includes programming projects where students build their own 3D rendering engine step-by-step.
CMSC430
(Perm Req)
Introduction to Compilers
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Topics include lexical analysis, parsing, intermediate representations, program analysis, optimization, and code generation.
CMSC433
(Perm Req)
Programming Language Technologies and Paradigms
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Programming language technologies (e.g., object-oriented programming), their implementations and use in software design and implementation.
CMSC434
(Perm Req)
Introduction to Human-Computer Interaction
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Assess usability by quantitative and qualitative methods. Conduct task analyses, usability tests, expert reviews, and continuing assessments of working products by interviews, surveys, and logging. Apply design processes and guidelines to develop professional quality user interfaces. Build low-fidelity paper mockups, and a high-fidelity prototype using contemporary tools such as graphic editors and a graphical programming environment (eg: Visual Basic, Java).
CMSC435
(Perm Req)
Software Engineering
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (CMSC412, CMSC417, CMSC420, CMSC430, CMSC433, ENEE447); and permission of CMNS-Computer Science department.
State-of-the-art techniques in software design and development. Laboratory experience in applying the techniques covered. Structured design, structured programming, top-down design and development, segmentation and modularization techniques, iterative enhancement, design and code inspection techniques, correctness, and chief-programmer teams. The development of a large software project.
CMSC436
(Perm Req)
Programming Handheld Systems
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Restriction: Permission of CMNS-Computer Science department.
Fundamental principles and concepts that underlie the programming of handheld systems, such as mobile phones, personal digital assistants, and tablet computers. Particular emphasis will be placed on concepts such as limited display size, power, memory and CPU speed; and new input modalities, where handheld systems differ substantially from non-handheld systems, and thus require special programming tools and approaches. Students will apply these concepts and principles in the context of an existing handset programming platform.
CMSC451
(Perm Req)
Design and Analysis of Computer Algorithms
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Fundamental techniques for designing efficient computer algorithms, proving their correctness, and analyzing their complexity. General topics include graph algorithms, basic algorithm design paradigms (such as greedy algorithms, divide-and-conquer, and dynamic programming), network flows, NP-completeness, and other selected topics in algorithms.
CMSC452
(Perm Req)
Elementary Theory of Computation
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC351; and permission of CMNS-Computer Science department. Or must be in the (Computer Science (Doctoral), Computer Science (Master's)) program.
Techniques are developed to determine the difficulty of a problem relative to a model of computation. Topics include Finite Automata, P, NP, decidability, undecidability, and communication complexity.
CMSC454
(Perm Req)
Algorithms for Data Science
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351.
Restriction: Permission of CMSC-Computer Science department.
Fundamental methods for processing a high volume of data. Methods include stream processing, locally sensitive hashing, web search methods, page rank computation, network and link analysis, dynamic graph algorithms as well as methods to handle high dimensional data/dimensionality reduction.
CMSC456
(Perm Req)
Credits: 3
Grad Meth: Reg
Prerequisite: (CMSC106, CMSC131, or ENEE150; or equivalent programming experience); and (2 courses from (CMSC330, CMSC351, ENEE324, or ENEE380); or any one of these courses and a 400-level MATH course, or two 400-level MATH courses); and Permission of CMNS-Mathematics department or permission of instructor .
Cross-listed with: MATH456, ENEE456.
Credit only granted for: MATH456, CMSC456 or ENEE456.
The theory, application, and implementation of mathematical techniques used to secure modern communications. Topics include symmetric and public-key encryption, message integrity, hash functions, block-cipher design and analysis, number theory, and digital signatures.
CMSC457
(Perm Req)
Introduction to Quantum Computing
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461, PHYS274); and 1 course with a minimum grade of C- from (CMSC351, PHYS373).
Restriction: Permission of CMNS-Computer Science department.
Additional information: No previous background in quantum mechanics is required.
An introduction to the concept of a quantum computer, including algorithms that outperform classical computation and methods for performing quantum computation reliably in the presence of noise. As this is a multidisciplinary subject, the course will cover basic concepts in theoretical computer science and physics in addition to introducing core quantum computing topics.
Cross-listed with PHYS457. Credit only granted for CMSC457 or PHYS457.
CMSC460
(Perm Req)
Computational Methods
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and 1 course with a minimum grade of C- from (MATH241, MATH340); and 1 course with a minimum grade of C- from (CMSC106, CMSC131); and minimum grade of C- in MATH246.
Cross-listed with: AMSC460.
Credit only granted for: AMSC460, AMSC466, CMSC460, or CMSC466.
Basic computational methods for interpolation, least squares, approximation, numerical quadrature, numerical solution of polynomial and transcendental equations, systems of linear equations and initial value problems for ordinary differential equations. Emphasis on methods and their computational properties rather than their analytic aspects. Intended primarily for students in the physical and engineering sciences.
CMSC466
(Perm Req)
Introduction to Numerical Analysis I
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and 1 course with a minimum grade of C- from (MATH241, MATH340); and 1 course with a minimum grade of C- from (CMSC106, CMSC131); and minimum grade of C- in MATH410.
Cross-listed with: AMSC466.
Credit only granted for: AMSC460, CMSC460, AMSC466, or CMSC466.
Floating point computations, direct methods for linear systems, interpolation, solution of nonlinear equations.
CMSC470
(Perm Req)
Introduction to Natural Language Processing
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC320, CMSC330, and CMSC351; and 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461).
Restriction: Permission of CMNS-Computer Science department.
Introduction to fundamental techniques for automatically processing and generating natural language with computers. Machine learning techniques, models, and algorithms that enable computers to deal with the ambiguity and implicit structure of natural language. Application of these techniques in a series of assignments designed to address a core application such as question answering or machine translation.
CMSC471
(Perm Req)
Introduction to Data Visualization
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330 and CMSC351; and permission of CMNS-Computer Science Department.
Restriction: Permission of the CMNS-Computer Science Department.
Credit only granted for: CMSC471 or CMSC498O.
Formerly: CMSC498O.
Datasets are becoming increasingly large and complex, requiring intuitive ways to explore and interpret them quickly and efficiently. In this case, a picture is worth a thousand words: visualizations enable us to transform data into images that are easier to understand and reason about, compared to raw numbers and raw text. Visualizations are critical tools in externalizing and organizing our knowledge and insights, whether to explore collected datasets to improve our understanding of the physical world, to assess and debug analysis/experimental workflows, or to present new and interesting results to diverse audiences. In this course we will study techniques and algorithms for creating effective visualizations based on principles from graphic design, perceptual psychology, and cognitive science. Students will learn how to design and build interactive visualizations for the web, using the D3.js (Data-Driven Documents) framework.
CMSC475
(Perm Req)
Combinatorics and Graph Theory
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and 1 course with a minimum grade of C- from (MATH241, MATH340). And permission of CMNS-Computer Science department; or permission of CMNS-Mathematics department.
Cross-listed with MATH475 .
General enumeration methods, difference equations, generating functions. Elements of graph theory, matrix representations of graphs, applications of graph theory to transport networks, matching theory and graphical algorithms.
CMSC477
(Perm Req)
Robotics Perception and Planning
Credits: 3
Grad Meth: Reg
Prerequisite: 1 course from (MATH240, MATH341, MATH461); and (ENEE467 or CMSC420).
Restriction: Must be in the Robotics and Autonomous Systems minor; and permission of Computer Science department.
A hands-on introduction to perception and planning for robotics, including rigid body transformations and rotations, dynamics and control of mobile robots/drones, graph based and sampling based planning algorithms, Bayseian and Kalman filtering, camera models and calibration, projective geometry, visual features, optical flow, pose estimation, RANSAC and Hough transform, structure from motion, visual odometry, machine learning basics, visual recognition and learning.
CMSC498A
(Perm Req)
Selected Topics in Computer Science
Credits: 1 - 3
Grad Meth: Reg
An individualized course designed to allow a student or students to pursue a selected topic not taught as a part of the regular course offerings under the supervision of a Computer Science faculty member. Credit according to work completed.
Contact department for information to register for this course.
CMSC498C
(Perm Req)
Selected Topics in Computer Science; Blockchains, Applied Cryptography, and Cryptocurrency
Credits: 3
Grad Meth: Reg
Prerequisite: Minimum grade of C- in CMSC330, CMSC351, and CMSC414 or CMSC456 Topics include blockchains ranging from fundamentals like consensus, to privacy-preserving payments, smart contracts, and decentralized finance(DeFi). The course will also cover recent developments in appliedcryptography that are in increasing industrial usage such as zero-knowledge proofs and a small amount on multi-party computation and fully homomorphic encryption. It will look at what it takes to take these technologies from academic theory to real-world usage.
CMSC498D
(Perm Req)
Selected Topics in Computer Science; Introduction to Computational Photography
Credits: 3
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC330 and CMSC351 and 1 course with a minimum grade of C- from (MATH240, MATH341, MATH461); and permission of CMNS-Computer Science Department.

A hands-on introduction to computational photography. The course will cover the principles of image formation and image processing. In the final project, students will construct their own camera out of a raspberry pi, an image sensor, and a piece of scotch tape.
CMSC498G
(Perm Req)
Selected Topics in Computer Science; Introduction to Privacy
Credits: 3
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC330 and CMSC351; and permission of CMNS-Computer Science Department.

Explores the intersection of technology and privacy, including technical mechanisms for data privacy, legal and regulatory privacy regimes, and mediation ofinterpersonal privacy through technology.
CMSC498Y
(Perm Req)
Selected Topics in Computer Science; Statistical Inference and Machine Learning Methods for Genomics Data
Credits: 3
Grad Meth: Reg
Prerequisites: Minimum grade of C- in CMSC351 and minimum grade of C- in any STAT400-level course; or DATA400; or ENEE324.

Covers statistical inference and machine learning methods for analyzing genomic data. Examples of topics covered will include maximum likelihood(including composite and pseudo-likelihood functions), expectation-maximization, clustering algorithms, hidden markov models, statistical testing, MCMC and variational inference. Our focus will be on how these techniques are utilized to solve biological problems and the practical challenges that arise when analyzing large genomic data sets.
CMSC499A
(Perm Req)
Independent Undergraduate Research
Credits: 1 - 3
Grad Meth: Reg
Students are provided with an opportunity to participate in a computer science research project under the guidance of a faculty advisor. Format varies. Students and supervising faculty member will agree to a research plan which must be approved by the department. As part of each research plan, students should produce a final paper delineating their contribution to the field.
Contact department for information to register for this course.
CMSC624
Database System Architecture and Implementation
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC424; or students who have taken courses with comparable content may contact the department.
Credit only granted for: CMSC624 or CMSC828N.
Formerly: CMSC828N.
In-depth overview of database architectures--both the mainstream traditional architecture and more modern architectures that are especially prevalent in cloud implementations. Topics include different architectural choices for different application spaces and the tradeoffs inherent in choices and building different parts of database systems.
CMSC656
Introduction to Cryptography
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC451, CMSC452, or CMSC456.
Credit only granted for: CMSC656 or CMSC858K.
Formerly: CMSC858K.
Introduction to modern cryptography. Topics include symmetric-key encryption, hash functions, message-authentication codes, block-cipher design, theoretical foundations, number theory, public-key encryption, and digital signatures.
CMSC661
(Perm Req)
Scientific Computing II
Credits: 3
Grad Meth: Reg
Prerequisite: Must have knowledge of Matlab or Python. Must have basic knowledge of ordinary and partial differential equations (MATH246 and MATH462 or equivalent, or permission of instructor).
Cross-listed with: AMSC661.
Credit only granted for: AMSC661 or CMSC661.
Numerical methods for solving ordinary and partial differential equations (elliptic, parabolic, hyperbolic, and dispersive): motivation, analysis, and implementation. Finite difference methods, finite element methods, Fourier and Chebyshev spectral methods, and meshless methods.
CMSC701
Computational Genomics
Credits: 3
Grad Meth: Reg, Aud
An introduction to the algorithms and heuristics used in the analysis of biological sequences. Includes an introduction to string matching and alignment algorithms, phylogenetic analysis, string reconstruction (genome assembly), and sequence pattern recognition (gene and motif finding). A particular emphasis will be placed on the design of efficient algorithms and on techniques for analyzing the time and space complexity of these algorithms. Computational concepts will be presented in the context of current biological applications. No prior knowledge of biology necessary.
CMSC711
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC412; or students who have taken courses with comparable content may contact the department.
Priciples, design, and performance evaluation of computer networks. Network architectures including the ISO model and local area networks (LANs). Communication protocols and network topology.
CMSC714
High Performance Computing Systems
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC411 and CMSC412; or permission of instructor.
Slected topics in high-performance systems, including contemporary architectures, interconnection topologies, shared memory and message-passing systems, multi-threaded kernels, latency avoidance and hiding techniques, methods for data and workload partitioning performance profiling, debugging.
CMSC725
Geographical Information Systems and Spatial Databases
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC424 and CMSC420; or permission of instructor.
Topics in geographic information systems and spatial databases. Integrates related results from databases, cartography, geography, computer graphics, file access methods, computational geometry, image processing, data structures, and programming languages. Topics include: cartographic modeling, principles of cartography, methods from computational geometry, principles of spatial databases, access methods, and spatial data structures. The architecture of some existing spatial databases and geographic information systems will be examined in greater detail.
CMSC734
Information Visualization
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: CMSC434; or students who have taken courses with comparable content may contact the department; or permission of instructor.
Information visualization defined in relation to graphics, scientific visualization, databases, data mining, and human-computer interaction. Visualizations for dimensional, temporal, hierarchical and network data. Examines design alternatives, algorithms and data structures, coordinated views, and human factors evaluations of efficacy.
CMSC752
Ramsey Theory and its Applications
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: Any CMSC45X course or any 400-level math course.
Credit only granted for: CMSC858R or CMSC752.
Formerly: CMSC858R.
Theorems about when a coloring of a graph (or other objects) has to yield a nice monochromatic object. Applications will be to computer science theory and to mathematics.
CMSC764
Advanced Numerical Optimization
Credits: 3
Grad Meth: Reg, Aud
Prerequisite: MATH410 or equivalent; or permission of instructor.
Credit only granted for: AMSC607, AMSC764, or CMSC764.
Modern numerical methods for solving unconstrained and constrained nonlinear optimization problems in finite dimensions. Design of computational algorithms and the analysis of their properties.
CMSC798
(Perm Req)
Master's Non-Thesis Research
Credits: 1 - 3
Grad Meth: Reg
Contact department for information to register for this course.
CMSC799
(Perm Req)
Master's Thesis Research
Credits: 1 - 6
Grad Meth: S-F
Contact department for information to register for this course.
CMSC800
How to Conduct Great Research
Credits: 1
Grad Meth: S-F, Aud
Restriction: Must be in the Computer Science doctoral program.
Credit only granted for: CMSC798F or CMSC800.
Formerly: CMSC798F.
Develop research skills so as to promote high quality and high impact.
CMSC818G
Advanced Topics in Computer Systems; Information-Centric Design of Systems
Credits: 3
Grad Meth: Reg, Aud
CMSC818Q
Advanced Topics in Computer Systems; Cloud Networking and Computing
Credits: 3
Grad Meth: Reg, Aud
CMSC828F
Advanced Topics in Information Processing
Credits: 3
Grad Meth: Reg, Aud, S-F
CMSC828G
Advanced Topics in Information Processing; Systems for Machine Learning
Credits: 3
Grad Meth: Reg, Aud, S-F
Restriction: Must be in the Computer Science or Applied Mathematics & & Statistics and Scientific Computation Master's or Doctoral programs, or permission of instructor.

Focus on computer systems and parallel computing research for advancing machine learning, in particular, deep learning. Topics include profiling and parallel scaling of deep learning workloads, kernel optimizations, optimizers, parallel deep learning and inference, and hardware-software co-design.
CMSC838E
Advanced Topics in Programming Languages; Compiler Construction
Credits: 3
Grad Meth: Reg, Aud
CMSC838M
Advanced Topics in Programming Languages; Physically-based Modeling, Simulation & Animation
Credits: 3
Grad Meth: Reg, Aud, S-F
CMSC848G
Selected Topics in Information Processing; Selected Topics in Machine Learning
Credits: 3
Grad Meth: Reg, Aud
CMSC848M
Selected Topics in Information Processing; Multimodal Computer Vision
Credits: 3
Grad Meth: Reg, Aud
The future of Artificial Intelligence demands a paradigm shift towards multimodal perception, enabling systems to interpret and fuse information from diverse sensory inputs. While we humans perceive the world by looking, listening, touching, smelling, and tasting, tradit form of machine intelligence has primarily focused on a single sensory modality, often vision. To truly understand the world around us, AI must learn to jointly interpret multimodal signals. This graduate-level seminar course explores computer vision from a multimodal perspective, focusing on learning algorithms that augment vision with other essentiamodalities, such as audio, touch, language, and more. The majority of the course will consist of student presentations, experiments, and paper discussions, and we will delve into the latest research and advancements in multimodal perception.
CMSC848O
Selected Topics in Information Processing; Long-Context Language Models
Credits: 3
Grad Meth: Reg, Aud
Restriction: Must be in the Computer Science Master's or Doctoral programs, or permission of instructor.

Focuses on recent developments in training, aligning, and evaluating long-context language models, which have allowed cutting-edge LLMs to process and generate millions of words. Topics include neural architectures (e.g., Transformers, Mamba), extended context fine-tuning/upscaling, and tasks such as summarization and QA over books.
CMSC858P
Advanced Topics in Theory of Computing; Shared-Memory Algorithms
Credits: 3
Grad Meth: Reg, Aud
CMSC858Q
Advanced Topics in Theory of Computing; Quantum Algorithms
Credits: 3
Grad Meth: Reg, Aud
CMSC898
Pre-Candidacy Research
Credits: 1 - 8
Grad Meth: Reg
Contact department for information to register for this course.
CMSC899
(Perm Req)
Doctoral Dissertation Research
Credits: 6
Grad Meth: S-F
Contact department for information to register for this course.